메뉴 건너뛰기

대메뉴명

광산업 뉴스

광산업 동향

협회 구입/보유 자료

정보자료 구매 요청

e-뉴스레터

광산업정보협회 구입/보유 자료국내외 최신 자료

국내외 최신 자료

※ 한국광산업 진흥회에 등록된 회원사만 가능합니다. 정보자료 열람 및 대여신청

122759번 게시글
분류번호 122759
자료명 (신규) Transceiver and System Design for Digital Communications
출판사 Scott R. Bullock
발행일 2017-10-02
금액(원) 228,000
내용 Contents
Preface xix
Acknowledgments xxv
About the author xxvii
1 Transceiver design 1
1.1 Frequency of operation 1
1.2 Transmitter 4
1.2.1 Transmitted effective isotropic radiated power 4
1.2.2 Power from the transmitter 5
1.2.3 Transmitter component losses 9
1.2.4 Transmitter line losses from the power amplifier
to the antenna 10
1.2.5 Transmitter antenna gain 10
1.2.6 Transmitter antenna losses 12
1.3 The channel 13
1.3.1 Free-space attenuation 13
1.3.2 Propagation losses 14
1.3.3 Multipath losses 15
1.4 Receiver 15
1.4.1 Receiver antenna losses 15
1.4.2 Receiver antenna gain 16
1.4.3 Receiver line losses from the antenna to the LNA 17
1.4.4 Receiver component losses 17
1.4.5 Received signal power at the output to the LNA 19
1.4.6 Receiver implementation loss 19
1.4.7 Doppler effects on received signal 20
1.4.8 Received power for establishing the signal-to-noise
ratio of a system 21
1.4.9 Received noise power 23
1.4.10 Noise figure 24
1.4.11 Received noise power at the detector 25
1.4.12 Receiver bandwidth 26
1.4.13 Received Eb/No at the detector 28
1.4.14 Receiver coding gain 28
1.4.15 Required Eb/No 28
1.5 The link budget 28
1.5.1 Spread spectrum systems 30
1.5.2 Process gain 30
1.5.3 Received power for establishing the signal-to-noise
ratio for a spread spectrum system 30
1.5.4 Link budget example 31
1.5.5 Benefits of using a link budget 33
1.6 Summary 33
1.7 Problems 33
Further reading 34
2 The transmitter 35
2.1 Basic functions of the transmitter 35
2.1.1 Transmit antenna 35
2.1.2 Transmit/receive device 36
2.1.3 RF power amplifier 37
2.1.4 Crest factor 38
2.1.5 Upconverter 39
2.1.6 Sum and difference frequencies generated
in the upconversion process 40
2.2 Voltage standing wave ratio 42
2.2.1 Maximum power transfer principle 43
2.3 Analog and digital communications 44
2.3.1 Digital-versus-analog communications 46
2.3.2 Software programmable radios and cognitive radios 47
2.4 Digital modulation 47
2.4.1 Binary phase-shift keying 48
2.4.2 Quadrature phase-shift keying 50
2.4.3 Offset QPSK 52
2.4.4 Higher order PSK 52
2.4.5 BPSK versus QPSK constellation comparison 54
2.4.6 8-Level PSK 54
2.4.7 p/4 differential QPSK 56
2.4.8 16-Offset quadrature amplitude modulation 56
2.4.9 Phasor constellations and noise immunity 57
2.4.10 Continuous phase PSK 59
2.4.11 Summary of PSK modulations 64
2.4.12 Differential phase-shift keying 64
2.4.13 Minimum shift keying 68
2.4.14 Frequency-shift keying 68
2.4.15 Sidelobe reduction methods 71
2.4.16 Ideal shaping filter 71
2.5 Direct sequence spread spectrum 73
2.5.1 Frequency-hopping spread spectrum 73
2.5.2 Spread spectrum 74
viii Transceiver and system design for digital communications 5th ed.
2.5.3 Jammer resistance 75
2.5.4 Despreading to realize process gain in the spread
spectrum system 76
2.5.5 Maximal length sequence codes 78
2.5.6 Maximal length PN code generator 80
2.5.7 Maximal length PN code taps 80
2.5.8 Gold codes 81
2.5.9 Other codes 82
2.5.10 Spectral lines in the frequency domain 82
2.6 Other forms of spread spectrum transmissions 83
2.6.1 Time hopping 84
2.6.2 Chirped-FM 84
2.7 Multiple users 85
2.7.1 Other methods for multiuser techniques 87
2.7.2 Orthogonal signals 87
2.7.3 Quadrature phase detection of two signals 88
2.7.4 Orthogonal frequency division multiplexing 89
2.7.5 Other OFDM techniques 91
2.8 Power control 91
2.9 Summary 92
2.10 Problems 93
Further reading 94
3 The receiver 95
3.1 Superheterodyne receiver 95
3.2 Basic functions of the receiver 96
3.3 Receiver antenna 97
3.4 Transmit/receive device 97
3.5 Image reject filter 97
3.6 Low-noise amplifier 99
3.7 RF downconverter 100
3.8 Mixers 101
3.8.1 Mixer spur analysis—level of spurious responses
and intermods 101
3.8.2 Sixth-order analysis 101
3.8.3 High-level or low-level mixers 103
3.8.4 High-side or low-side injection 103
3.9 Automatic gain control 105
3.10 IF downconverter 105
3.11 Splitting signals into multiple bands for processing 106
3.12 Bandwidth considerations 107
3.13 Phase noise 107
3.14 Filter characteristics 108
3.15 Group delay 109
3.16 Analog-to-digital converter 111
Contents ix
3.17 Sampling theorem and aliasing 113
3.18 Dynamic range/minimum detectable signal 115
3.19 Types of DR 117
3.19.1 Amplitude DR 117
3.19.2 Frequency DR 118
3.19.3 Single-tone frequency DR 119
3.19.4 Two-tone frequency DR 119
3.20 Second- and third-order intermodulation products 119
3.21 Calculating two-tone frequency DR 121
3.22 System DR 123
3.23 Sensitivity 125
3.24 Digital signal processor 126
3.25 Summary 126
3.26 Problems 127
Further reading 127
4 AGC design and PLL comparison 129
4.1 AGC design 129
4.2 AGC amplifier curve 131
4.3 Linearizers 132
4.4 Detector 133
4.5 Loop filter 136
4.6 Threshold level 136
4.7 Integrator 136
4.8 Control theory analysis 138
4.8.1 AGC design example 142
4.9 Modulation frequency distortion 144
4.10 Comparison of the PLL and AGC using feedback
analysis techniques 146
4.11 Basic PLL 146
4.12 Control-system analysis 147
4.13 Detector 148
4.14 Loop filter 148
4.15 Loop gain constant 148
4.16 Integrator 148
4.17 Conversion gain constant 149
4.18 Control theory analysis 149
4.19 Similarities between the AGC and the PLL 152
4.20 Feedback systems, oscillations, and stability 152
4.21 Summary 153
4.22 Problems 154
Further reading 154
5 Demodulation 155
5.1 Carrier recovery for suppressed carrier removal 155
5.1.1 Squaring loop 156
x Transceiver and system design for digital communications 5th ed.
5.1.2 Costas loop 159
5.1.3 Modified or hard-limited Costas loop and automatic
frequency control addition 160
5.1.4 Decision-directed Costas loop 161
5.2 Demodulation process to remove spread spectrum code 163
5.2.1 Matched filter correlator 163
5.2.2 Sliding correlator 170
5.3 The eye pattern 175
5.4 Intersymbol interference 176
5.5 Symbol synchronizer 177
5.6 Digital processor 178
5.7 Scrambler/descrambler 179
5.8 Shannon’s limit 179
5.9 Phase-shift detection 180
5.10 Summary 181
5.11 Problems 182
Further reading 183
6 Basic probability and pulse theory 185
6.1 Basic probability concepts 185
6.2 The Gaussian process 186
6.3 Quantization and sampling errors 189
6.4 Probability of error 191
6.5 Error detection and correction 192
6.5.1 Error detection 193
6.5.2 Error detection using parity 193
6.5.3 Error detection using checksum 194
6.5.4 Error detection using CRC 195
6.5.5 Error correction 196
6.5.6 Error correction using redundancy 196
6.5.7 Forward error correction 197
6.5.8 Types of FEC 198
6.5.9 Interleaving 206
6.5.10 Viterbi decoder 207
6.5.11 Turbo and low-density parity check codes 207
6.6 Theory of pulse systems 211
6.7 PN code 213
6.8 Summary 214
6.9 Problems 215
Further reading 215
7 Multipath 217
7.1 Basic types of multipath 218
7.2 Specular reflection on a smooth surface 218
7.3 Specular reflection on a rough surface 220
7.4 Diffuse reflection 221
Contents xi
7.5 Curvature of the earth 223
7.6 Pulse systems (radar) 223
7.7 Vector analysis approach 224
7.8 Multipath mitigation techniques 225
7.8.1 Antenna diversity 226
7.9 Summary 226
7.10 Problems 227
Further reading 227
8 Improving the system against jammers 229
8.1 Unfriendly jammers 229
8.1.1 Spot jammer 229
8.1.2 Barrage jammer 230
8.1.3 Continuous wave (CW) jammer 231
8.1.4 Repeater jammer 232
8.1.5 Cognitive jammer 232
8.1.6 Burst or pulsed jammer 233
8.1.7 Capturing the AGC 234
8.2 Techniques to reduce jammers 234
8.2.1 Burst clamp 236
8.2.2 Adaptive filter 238
8.2.3 Gram–Schmidt orthogonalizer 250
8.2.4 Basic GSO 252
8.2.5 Adaptive GSO implementation 254
8.3 Intercept receiver comparison 256
8.4 Summary 258
8.5 Problems 259
Further reading 259
9 Cognitive systems 261
9.1 The environment 261
9.1.1 Jammers 261
9.1.2 Channel degradation 263
9.2 Cognitive capabilities 263
9.2.1 Dynamic spectrum access 264
9.2.2 Adaptive power/gain control 266
9.2.3 Cognitive techniques using modulation waveforms 274
9.2.4 Spread spectrum SS for increased process gain against
jammers 275
9.2.5 Adaptive error correction 277
9.2.6 Adaptive filter for jammer mitigation 277
9.2.7 Dynamic antenna techniques using AESAs 279
9.2.8 Antenna angle 281
9.2.9 Multiple antennas 283
9.2.10 Network configurations 284
9.2.11 Cognitive MANET networks 285
xii Transceiver and system design for digital communications 5th ed.
9.3 Cognitive system solution 287
9.4 Predicted methods—predicting before signal loss 293
9.5 Learning and reasoning capabilities of a
cognitive system 296
9.5.1 Methods of reasoning 296
9.5.2 Elements of reasoning 297
9.6 Multiagent system MAS 297
9.7 Noncooperative game theory 297
9.8 Cooperative game theory 298
9.9 Coalitional game theory 298
9.10 Nash equilibrium 298
9.10.1 Nash equilibrium definitions 299
9.10.2 Nash equilibrium examples 299
9.11 Challenges to cognition 299
9.12 Summary 300
9.13 Problems 300
Further reading 301
10 Volume search, acquisition, and track 303
10.1 Volume search 303
10.1.1 Raster scan 304
10.1.2 Binary scan 305
10.1.3 Random scan 306
10.1.4 Bias expansion scan 306
10.1.5 Outside-in volume search 307
10.1.6 Inside-out volume search 307
10.1.7 Directional volume search results 309
10.1.8 Beam spoiling 309
10.1.9 Sidelobe detection 310
10.1.10 Coordinate conversions for volume-search
process 311
10.1.11 Directional antenna beam 312
10.2 Acquisition: two-dimensional sequential scanning 312
10.3 Track 313
10.3.1 Linear and angular velocity 314
10.3.2 Sequential lobing 315
10.3.3 CONical SCAN (CONSCAN) 316
10.3.4 Monopulse 317
10.3.5 Alpha–beta tracker 319
10.3.6 Integrating closed-loop tracker with open-loop
navigational tracker 319
10.3.7 Integrating external navigational track with internal
navigational track 325
10.4 Summary 327
10.5 Problems 327
Further reading 328
Contents xiii
11 Broadband communications and networking 329
11.1 Mobile users 329
11.1.1 Personal communications services 330
11.1.2 Cellular telephone 332
11.1.3 Industrial, scientific, and medical bands 332
11.2 Types of distribution methods for the home 333
11.2.1 Power-line communications 333
11.2.2 Home phoneline networking alliance 334
11.2.3 Radio frequency communications 334
11.2.4 Wi-Fi (IEEE 802.11) 335
11.2.5 Bluetooth (IEEE 802.15) 337
11.2.6 WiMAX (IEEE 802.16) 339
11.2.7 LTE 342
11.3 Local multipoint distribution service 344
11.4 MMDS 348
11.5 Universal mobile telecommunications system 349
11.6 4G 349
11.7 Mobile broadband wireless access IEEE 802.20 350
11.8 MIMO communications 350
11.9 MISO applications for cellular networks 351
11.10 Quality of service 352
11.11 Military radios and data links 354
11.11.1 The joint tactical radio system 354
11.11.2 SDRs 356
11.11.3 Software communications architecture 356
11.11.4 JTRS radios (clusters) 356
11.11.5 JTRS upgrades 357
11.11.6 JTRS network challenge 362
11.11.7 Gateway and network configurations 362
11.11.8 Link 16 366
11.11.9 Link 16 modulation 367
11.11.10 TDMA 367
11.11.11 ‘‘Stacked’’ nets 367
11.11.12 Time slot reallocation 368
11.11.13 Bit/message structure 368
11.12 Summary 369
11.13 Problems 369
Further reading 370
12 Satellite communications 371
12.1 Communications satellites 371
12.2 General satellite operation 371
12.2.1 Operational frequencies 373
12.2.2 Modulation 374
xiv Transceiver and system design for digital communications 5th ed.
12.2.3 Adaptive differential pulse-code modulation 374
12.3 Fixed satellite service 375
12.4 Geosynchronous and geostationary orbits 375
12.5 Ground station antennas 376
12.6 Noise and the low-noise amplifier 377
12.7 The link budget 381
12.7.1 EIRP 381
12.7.2 Propagation losses 382
12.7.3 Received power at the receiver 382
12.7.4 Carrier power/equivalent temperature 382
12.8 Multiple channels in the same frequency band 384
12.9 Multiple access schemes 384
12.10 Propagation delay 385
12.11 Cost for use of the satellites 385
12.12 Regulations 385
12.13 Types of satellites used for communications 386
12.14 System design for satellite communications 387
12.15 Summary 387
12.16 Problems 387
Further reading 388
13 Global navigation satellite system 389
13.1 Satellite transmissions 389
13.2 Data signal structure 390
13.3 GPS receiver 391
13.3.1 GPS process gain 391
13.3.2 Positioning calculations 391
13.4 Atmospheric errors 393
13.5 Multipath errors 393
13.6 Narrow correlator 394
13.7 Selective availability 396
13.8 Carrier smoothed code 396
13.9 Differential GPS 398
13.10 DGPS time synchronization 398
13.11 Relative GPS 399
13.12 Doppler 399
13.13 Kinematic carrier phase tracking 401
13.14 Double difference 401
13.15 Wide lane/narrow lane 402
13.16 Other satellite positioning systems 403
13.17 Summary 404
13.18 Problems 404
Further reading 404
Contents xv
14 Introduction to radar and radar communications 405
14.1 Radar applications 406
14.2 Two basic radar types 406
14.3 Basic pulse radar operation 407
14.3.1 Pulse radar modulation 408
14.3.2 Radar cross section 409
14.3.3 Radar path budget 410
14.3.4 Range determination 416
14.3.5 Bearing 423
14.3.6 Radar accuracy 426
14.3.7 Plan position indicator and A-Scope 426
14.3.8 Probability of detection and false alarms 426
14.3.9 Pulsed system probabilities using binomial
distribution function BDF 431
14.3.10 Pulse shaping for radars 433
14.4 Clutter 433
14.5 Radar frequency bands 434
14.6 Moving target indicator 435
14.7 One-way passive radar Doppler effects 437
14.8 Two-way active radar Doppler effects 437
14.9 MTI sampling process 438
14.10 Multiple pulse MTI radar 441
14.11 Types of radar antennas 442
14.12 Block diagrams of a pulse radar system 445
14.13 Other types of radars 447
14.13.1 Search, acquisition, and track radar 447
14.13.2 Missile and missile guidance radars 448
14.13.3 Airborne radars 449
14.13.4 Frequency diversity radar 449
14.13.5 Chirped radar 449
14.13.6 Digital pulse compression radar 450
14.13.7 Frequency-modulated CW radar 450
14.13.8 Doppler radar 453
14.13.9 Next-generation radar weather radar 454
14.13.10 Terminal Doppler weather radar (TDWR) 455
14.13.11 Synthetic-aperture radar (SAR) 455
14.14 Radar communications 456
14.14.1 Direct burst pulse-coded modulation (PCM) for
communications 456
14.14.2 Pulse-coded modulation/pulse position modulation 459
14.14.3 Radar communication applications 464
14.14.4 Advantages of PCM/PPM against Doppler
and multipath 466
14.15 Conclusion 467
14.16 Problems 468
Further reading 470
xvi Transceiver and system design for digital communications 5th ed.
15 Direction finding and interferometer analysis 471
15.1 Interferometer analysis 471
15.2 Direction cosines 471
15.3 Basic interferometer equation 473
15.4 Three-dimensional approach 475
15.5 Antenna position matrix 476
15.6 Coordinate conversion due to pitch and roll 476
15.7 Using direction cosines 478
15.8 Alternate method 483
15.9 Quaternions 483
15.10 Summary 483
15.11 Problems 484
Further reading 484
Appendix A: Coordinate conversions 485
Appendix B 487
B.1 True north calculations 487
B.2 Phase ambiguities 487
Appendix C 489
C.1 Elevation effects on azimuth error 489
Appendix D 491
D.1 Earth’s radius compensation for elevation angle calculation 491
Answers 493
Index 507
목록